Ample Sound Agg V1.6.0 Incl Keygen Generator [WORK]
DOWNLOAD ::: https://shurll.com/2sZHZx
This study examined the concurrent and predictive validity of Type A/B alcohol dependence in the general population-a typology developed in clinical populations to gauge severity of dependence. Data were drawn from Waves 1 and 2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). The sample included 1,172 alcohol-dependent drinkers at baseline who were reinterviewed three years later. Latent class analysis was used to derive Type A/B classification using variables replicating the original Type A/B typology. Predictive validity of the Type A/B classification was assessed by multivariable linear and logistic regressions. A two-class solution consistent with Babor's original Type A/B typology adequately fit the data. Type B alcoholics in the general population, compared to Type As, had higher alcohol severity and more co-occurring drug, mental, and physical health problems. In the absence of treatment services utilization, Type B drinkers had two times the odds of being alcohol dependent three years later. Among those who utilized alcohol treatment services, Type B membership was predictive of heavy drinking and drug dependence, but not alcohol dependence, three years later. Findings suggest that Type A/B classification is both generalizable to, and valid within, the US general population of alcohol dependent drinkers. Results highlight the value of treatment for mitigating the persistence of dependence among Type B alcoholics in the general population. Screening for markers of vulnerability to Type B dependence could be of clinical value for health care providers to determine appropriate intervention. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.
Therapeutic monoclonal antibodies (mAbs) currently dominate the biologics marketplace. Development of a new therapeutic mAb candidate is a complex, multistep process and early stages of development typically begin in an academic research environment. Recently, a number of facilities and initiatives have been launched to aid researchers along this difficult path and facilitate progression of the next mAb blockbuster. Complementing this, there has been a renewed interest from the pharmaceutical industry to reconnect with academia in order to boost dwindling pipelines and encourage innovation. In this review, we examine the steps required to take a therapeutic mAb from discovery through early stage preclinical development and toward becoming a feasible clinical candidate. Discussion of the technologies used for mAb discovery, production in mammalian cells and innovations in single-use bioprocessing is included. We also examine regulatory requirements for product quality and characterization that should be considered at the earliest stages of mAb development. We provide details on the facilities available to help researchers and small-biotech build value into early stage product development, and include examples from within our own facility of how technologies are utilized and an analysis of our client base.
Investigation of physiological mechanisms at a cellular level often requires production of high-quality antibodies, frequently using synthetic peptides as immunogens. Here we describe a new, web-based software tool called NHLBI-AbDesigner that allows the user to visualize the information needed to choose optimal peptide sequences for peptide-directed antibody production ( ). The choice of an immunizing peptide is generally based on a need to optimize immunogenicity, antibody specificity, multispecies conservation, and robustness in the face of posttranslational modifications (PTMs). AbDesigner displays information relevant to these criteria as follows: 1) "Immunogenicity Score," based on hydropathy and secondary structure prediction; 2) "Uniqueness Score," a predictor of specificity of an antibody against all proteins expressed in the same species; 3) "Conservation Score," a predictor of ability of the antibody to recognize orthologs in other animal species; and 4) "Protein Features" that show structural domains, variable regions, and annotated PTMs that may affect antibody performance. AbDesigner displays the information online in an interactive graphical user interface, which allows the user to recognize the trade-offs that exist for alternative synthetic peptide choices and to choose the one that is best for a proposed application. Several examples of the use of AbDesigner for the display of such trade-offs are presented, including production of a new antibody to Slc9a3. We also used the program in large-scale mode to create a database listing the 15-amino acid peptides with the highest Immunogenicity Scores for all known proteins in five animal species, one plant species (Arabidopsis thaliana), and Saccharomyces cerevisiae.
This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.
A multicenter clinical study was conducted to evaluate the performance characteristics of the Abbott RealTime CT/NG assay, a multiplex real-time PCR assay, for simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae. The specimens were collected from a total of 3,832 male and female subjects at 16 geographically diverse sites. Specimens included male and female urine samples, male urethral swabs, female endocervical swabs, and self-collected and clinician-collected vaginal swabs. Specimens were tested with the automated Abbott RealTime CT/NG assay, Aptima Combo 2 assay (Gen-Probe), ProbeTec ET CT/GC assay (Becton Dickinson), and culture for N. gonorrhoeae. The Aptima Combo 2 assay, the ProbeTec assay, and the N. gonorrhoeae culture were used as the reference assays. For each subject, a patient infected status (PIS) was determined based on the combined results from the reference assays. The overall prevalence in female subjects was 8.9% for C. trachomatis and 3.8% for N. gonorrhoeae. The overall male prevalence was 18.2% for C. trachomatis and 16.7% for N. gonorrhoeae. The overall sensitivity and specificity of the Abbott RealTime CT/NG assay were 92.4% and 99.2% for C. trachomatis and 96.9% and 99.7% for N. gonorrhoeae, respectively. In comparison, the sensitivity and specificity, respectively, for the Aptima Combo 2 assay were 94.5% and 99.0% for C. trachomatis and 96.1% and 99.5% for N. gonorrhoeae, and those for the ProbeTec ET assay were 90.3% and 99.5% for C. trachomatis and 92.0% and 97.3% for N. gonorrhoeae in this study. The Abbott RealTime CT/NG assay offers C. trachomatis and N. gonorrhoeae dual detection with high sensitivity and specificity. The automated assay provides a useful alternative nucleic acid amplification assay for clinical laboratories and clinicians.
A multicenter clinical study was conducted to evaluate the performance characteristics of the Abbott RealTime CT/NG assay, a multiplex real-time PCR assay, for simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae. The specimens were collected from a total of 3,832 male and female subjects at 16 geographically diverse sites. Specimens included male and female urine samples, male urethral swabs, female endocervical swabs, and self-collected and clinician-collected vaginal swabs. Specimens were tested with the automated Abbott RealTime CT/NG assay, Aptima Combo 2 assay (Gen-Probe), ProbeTec ET CT/GC assay (Becton Dickinson), and culture for N. gonorrhoeae. The Aptima Combo 2 assay, the ProbeTec assay, and the N. gonorrhoeae culture were used as the reference assays. For each subject, a patient infected status (PIS) was determined based on the combined results from the reference assays. The overall prevalence in female subjects was 8.9% for C. trachomatis and 3.8% for N. gonorrhoeae. The overall male prevalence was 18.2% for C. trachomatis and 16.7% for N. gonorrhoeae. The overall sensitivity and specificity of the Abbott RealTime CT/NG assay were 92.4% and 99.2% for C. trachomatis and 96.9% and 99.7% for N. gonorrhoeae, respectively. In comparison, the sensitivity and specificity, respectively, for the Aptima Combo 2 assay were 94.5% and 99.0% for C. trachomatis and 96.1% and 99.5% for N. gonorrhoeae, and those for the ProbeTec ET assay were 90.3% and 99.5% for C. trachomatis and 92.0% and 97.3% for N. gonorrhoeae in this study. The Abbott RealTime CT/NG assay offers C. trachomatis and N. gonorrhoeae dual detection with high sensitivity and specificity. The automated assay provides a useful alternative nucleic acid amplification assay for clinical laboratories and clinicians. PMID:20668135 2b1af7f3a8